Amazon cover image
Image from Amazon.com
Image from Google Jackets

Regression for economics / Shahdad Naghshpour.

By: Material type: TextTextSeries: Economics collectionPublisher: New York, New York (222 East 46th Street, New York, NY 10017) : Business Expert Press, 2016Edition: Second editionDescription: 1 online resource (xix, 166 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781631574443
Subject(s): Genre/Form: Additional physical formats: Print version:: No titleDDC classification:
  • 519.536 23
LOC classification:
  • HB137 .N247 2016
Online resources:
Contents:
1. The concept of regression -- 2. The method of least squares -- 3. Simple linear regression using software packages -- 4. Multiple regression -- 5. Goodness of fit -- 6. Regression coefficients -- 7. Causality: correlation is not causality -- 8. Qualitative variables in regression -- 9. Pitfalls of regression analysis -- Appendix -- Glossary of terms -- Notes -- References -- Index.
Abstract: The concept of regression was introduced by Legendre in 1805 and advanced by Gauss in 1809. The term was popularized after Galton's 1886 article. Contribution of R. A. Fisher in the early 20th century was instrumental to the spread of the method to every scientific branch. Regression analysis, used in economics and many other fields, is now the most commonly used statistical method. Although few would characterize this technique as simple, regression is in fact both simple and elegant. The complexity that many attribute to regression analysis is often a reflection of their lack of familiarity with the language of mathematics. But regression analysis can be understood even without the mastery of sophisticated mathematical concepts. This book provides the foundation of regression analysis in a way that is easy to comprehend. All the examples are from economics and in almost all the examples real data are used to show the application of the method.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references (page [161]) and index.

1. The concept of regression -- 2. The method of least squares -- 3. Simple linear regression using software packages -- 4. Multiple regression -- 5. Goodness of fit -- 6. Regression coefficients -- 7. Causality: correlation is not causality -- 8. Qualitative variables in regression -- 9. Pitfalls of regression analysis -- Appendix -- Glossary of terms -- Notes -- References -- Index.

Access restricted to authorized users and institutions.

The concept of regression was introduced by Legendre in 1805 and advanced by Gauss in 1809. The term was popularized after Galton's 1886 article. Contribution of R. A. Fisher in the early 20th century was instrumental to the spread of the method to every scientific branch. Regression analysis, used in economics and many other fields, is now the most commonly used statistical method. Although few would characterize this technique as simple, regression is in fact both simple and elegant. The complexity that many attribute to regression analysis is often a reflection of their lack of familiarity with the language of mathematics. But regression analysis can be understood even without the mastery of sophisticated mathematical concepts. This book provides the foundation of regression analysis in a way that is easy to comprehend. All the examples are from economics and in almost all the examples real data are used to show the application of the method.

Title from PDF title page (viewed on May 12, 2016).

Electronic reproduction. Ann Arbor, MI : ProQuest, 2016. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.

There are no comments on this title.

to post a comment.
Installed and Supported by focuz infotech